View Single Post
Old 07-31-2008, 12:56 PM   #4
Raj_Copi_Jin

Join Date
Oct 2005
Age
48
Posts
4,533
Senior Member
Default
By Fred Burton and Scott Stewart
High food prices have sparked a great deal of unrest over the past few weeks. Indeed, the skyrocketing cost of food staples like grain has caused protests involving thousands of people in places such as South Africa, Egypt and Pakistan. These protests turned deadly in Haiti and even led to the ouster of Prime Minister Jacques-Edouard Alexis.

With global food supplies already tight, many people have begun once again to think (and perhaps even worry) about threats to the U.S. agricultural system and the impact such threats could have on the U.S. — and global — food supply. In light of this, it is instructive to examine some of these threats and attempt to place them in perspective.

A Breakdown of Potential Threats

Since the Sept. 11, 2001, attacks, there have been many reports issued by various government and civilian sources warning of the possibility that terrorists could target the U.S. food supply. At the most basic level, threats to a country’s food supply can come in two general forms: attacks designed to create famine and attacks designed to directly poison people.
Attacks designed to create famine would entail the use of some agent intended to kill crops or livestock. Such agents could include pathogens, insects or chemicals. The pathogens might include such livestock diseases as Bovine spongiform encephalopathy (BSE), commonly called mad cow disease, or hoof-and-mouth disease. Crop diseases such as Ug99 fungus or molds also pose a threat to supplies.

Attacks designed to poison people could also be further divided into two general forms: those intended to introduce toxins or pathogens prior to processing and those intended to attack finished food products. Attacks against foodstuffs during agricultural production could include placing an agent on crops in the field or while in transit to a mill or processing center. Attacks against finished foodstuffs would entail covertly placing the toxin or pathogen into the finished food product after processing.

It must be noted that an attack against people could also be conducted for the purposes of creating a mass disruption — such action would not be designed to cause mass casualties, but rather to create fear, unrest and mistrust of the government and food supply, or to promote hoarding. In fact, based on historical examples of incidents involving the contamination of food products, such an attack is far more likely to occur than a serious systematic attack on the food supply.

Attack Constraints

While attacks against the food supply may appear simple in theory, they have occurred infrequently and for good reason: When one considers the sheer size of the U.S. agricultural sector, conducting a productive assault proves difficult.

As seen by the coca and marijuana eradication efforts by the United States and its partners in Mexico, Central America and the Andes, the logistical effort needed to make any substantial dent in agricultural production is massive. Even the vast resources the United States has dedicated to drug eradication tasks in small countries –- overt plane flights spraying untold thousands of gallons of herbicides for decades — have failed to create more than a limited effect on marijuana and coca crops. Obviously, any sort of meaningful chemical attack on U.S. agriculture would have to be so massive that it is simply not logistically feasible.

This is where pathogens — agents that can, at least in theory, be introduced in limited amounts, reproduce and then rapidly spread to infect a far larger area — enter the picture. In order to be effective, however, a pathogen must be one that is easily spread and very deadly and has a long incubation period (in order to ensure it is passed along before the host dies). It is also very helpful to the propagation of a disease if it is difficult to detect and/or difficult to treat. While a pathogen that possesses all of the aforementioned traits could be devastating, finding such an agent is difficult. Few diseases have all the requisite characteristics. Some are very deadly, but act too quickly to be passed, while others are more readily passed but do not have a long incubation period or are not as virulent.
Other pathogens, such as the Ug99 wheat fungus, are easy to detect and kill. There is also the problem of mutation, meaning that many pathogens tend to mutate into less virulent actors. It is also important to note that genetically engineering a super bug — one that possess all the characteristics to make it highly effective — is still much harder in real life than it is on television.

Even if such an effective pathogen is found, someone intending to use it in an attack must isolate the virulent strain, manufacture it in sufficient quantities to be effective, ship it to the place of the planned attack and then distribute it in a manner whereby it is effectively dispersed. The infrastructure required to undertake such an endeavor is both large and expensive. Even in past cases where groups possessed the vast monetary resources to fund biological weapons efforts and amassed the scientific expertise to attempt such a program — Aum Shinrikyo comes to mind — virulent pathogens have proven very difficult to produce and effectively disperse in large quantities.

Another factor making these sorts of attacks difficult to orchestrate is the very nature of farming. For thousands of years, farmers have been battling plant and animal diseases. Most of the pathogens that are mentioned in connection with attacks against agriculture include elements already existing in nature such as hoof-and-mouth disease, H5N1 bird flu or a fungus like Ug99. As a result, farmers and governmental organizations such as the Animal and Plant Health Inspection Service have systems in place to monitor crops and animals for signs of pathogens. When these pathogens appear, action is taken and diseased crops are treated or eradicated. Animals are treated or culled. Even in past cases where massive eradication and culling efforts occurred — BSE in the United Kingdom, citrus canker in Florida or the many bird flu outbreaks over the past few years –- the measures have not crippled or affected the country’s agricultural sector or the larger economy.

Creating famine and poisoning the food supply are also difficult, given the sheer quantity of agricultural products grown. Applying some sort of toxin before the raw food is processed is difficult, given the volume produced. In fact, much grain is diverted to uses other than human consumption, as when corn is used to produce ethanol or feed livestock. Therefore, if a truckload of corn is poisoned, it might never funnel into the human food chain. Furthermore, even if a truck of contaminated grain were destined for the food chain, by the time it made its way through the process it would likely be too diluted to have any effect. During the production process, contaminated corn would first have to combine with other grain, sit in a silo, be moved and stored again, ground and finally made into a finished food product such as a loaf of cornbread — an unlikely source of poisoning for the end user. Processing, washing, cooking, pasteurizing and refining may all also serve to further dilute, cleanse or damage the pathogen in the targeted product. At this point, food is also inspected for naturally occurring pathogens and toxins. Such inspections could help spot an intentional contamination.

Besides, even contaminating one truckload of grain would require a large amount of toxin. Producing that much toxin would require a substantial infrastructure –- one that would require a great deal of time and money to build. Not to mention the difficulty inherent in transporting and delivering the toxin.
Raj_Copi_Jin is offline


 

All times are GMT +1. The time now is 09:23 AM.
Copyright ©2000 - 2012, Jelsoft Enterprises Ltd.
Design & Developed by Amodity.com
Copyright© Amodity